Terence I. Moy, Annie L. Conery, Jonah Larkins-Ford, Gang Wu, Ralph Mazitschek, Gabriele Casadei, Kim Lewis, Anne E. Carpenter and Frederick M. Ausubel

ACS Chem. Biol., 2009, 4 (7), pp 527–533
DOI: 10.1021/cb900084v
Publication Date (Web): June 29, 2009

Abstract

The nematode Caenorhabditis elegans is a unique whole animal model system for identifying small molecules with in vivo anti-infective properties. C. elegans can be infected with a broad range of human pathogens, including Enterococcus faecalis, an important human nosocomial pathogen. Here, we describe an automated, high-throughput screen of 37,200 compounds and natural product extracts for those that enhance survival of C. elegans infected with E. faecalis. Using a robot to dispense live, infected animals into 384-well plates and automated microscopy and image analysis, we identified 28 compounds and extracts not previously reported to have antimicrobial properties, including six structural classes that cure infected C. elegans animals but do not affect the growth of the pathogen in vitro, thus acting by a mechanism of action distinct from antibiotics currently in clinical use.

News - Articles

Site Search

share

FacebookTwitterLinkedin

Contact Us

Phone: 302-292-8500
Fax: 302-292-8520